

ACTIVITY INFORMATION SHEET FOR REGULARLY SCHEDULED SERIES (RSS)

Date: ELECTRONIC EDUCATION DOCUMENTATION SYSTEMS (eeds)

Presenter: Daniel Behin, MD

Activity Title: Medicine Grand Rounds: COVID-19 and the GI Tract

Location: Zoom Conference

DISCLOSURES

This activity is made possible in part by an educational grant:

N/A

Course Director's/Moderator's

Dr Elizabeth Kitsis has no relevant financial relationships with an ACCME-defined commercial interest within the past 12 months.

Presenter's

Dr Behin has no relevant financial relationships with an ACCME-defined commercial interest within the past 12 months.

OBJECTIVES

- Understand GI involvement in systemic COVID-19 infection
- Recognize GI manifestations of COVID-19 infection
- Be aware of GI tract imaging abnormalities associated with COVID-19 infection
- Analyze current concepts and limitations supporting the spread of COVID-19 via the GI tract
- Appreciate the literature supporting H2RAs to alter outcomes in COVID-19 infection

COVID-19 and the GI Tract

Daniel Behin, MD Medical Grand Rounds 8/27/2020

Objectives

- To recognize GI manifestations of COVID-19 infection
- To understand GI involvement in systemic COVID-19 infection
- To be aware of GI tract imaging abnormalities associated with COVID-19 infection
- To analyze current concepts and limitations supporting the spread of COVID-19 via the GI tract
- To appreciate the literature supporting H₂RAs to alter outcomes in COVID-19 infection

GI Manifestations

ORIGINAL ARTICLE

Clinical Characteristics of Coronavirus Disease 2019 in China

W. Guan, Z. Ni, Yu Hu, W. Liang, C. Ou, J. He, L. Liu, H. Shan, C. Lei, D.S.C. Hui, B. Du, L. Li, G. Zeng, K.-Y. Yuen, R. Chen, C. Tang, T. Wang, P. Chen, J. Xiang, S. Li, Jin-lin Wang, Z. Liang, Y. Peng, L. Wei, Y. Liu, Ya-hua Hu, P. Peng, Jian-ming Wang, J. Liu, Z. Chen, G. Li, Z. Zheng, S. Qiu, J. Luo, C. Ye, S. Zhu, and N. Zhong, for the China Medical Treatment Expert Group for Covid-19*

Characteristic	All Patients (N= 1099)	Disease	e Severity	Presence of Primary	Composite End Point†
		Nonsevere $(N = 926)$	Severe (N = 173)	Yes (N= 67)	No (N=1032)
Nasal congestion	53 (4.8)	47 (5.1)	6 (3.5)	2 (3.0)	51 (4.9)
Headache	150 (13.6)	124 (13.4)	26 (15.0)	8 (11.9)	142 (13.8)
Cough	745 (67.8)	623 (67.3)	122 (70.5)	46 (68.7)	699 (67.7)
Sore throat	153 (13.9)	130 (14.0)	23 (13.3)	6 (9.0)	147 (14.2)
Sputum production	370 (33.7)	309 (33.4)	61 (35.3)	20 (29.9)	350 (33.9)
Fatigue	419 (38.1)	350 (37.8)	69 (39.9)	22 (32.8)	397 (38.5)
Hemoptysis	10 (0.9)	6 (0.6)	4 (2.3)	2 (3.0)	8 (0.8)
Shortness of breath	205 (18.7)	140 (15.1)	65 (37.6)	36 (53.7)	169 (16.4)
Nausea or vomiting	55 (5.0)	43 (4.6)	12 (6.9)	3 (4.5)	52 (5.0)
Diarrhea	42 (3.8)	32 (3.5)	10 (5.8)	4 (6.0)	38 (3.7)

Symptom Timeline

February 2020

Fever, cough, shortness of breath

April 2020

- Chills, repeated shaking with chills, muscle pain, headache, sore throat, loss of taste (dysgeusia) or smell (dysosmia)

June 2020

Congestion, runny nose, nausea, diarrhea

Symptom Timeline

February 2020

Fever

Cough

Shortness of breath

April 2020

Chills

Muscle pain

Headache

Sore throat

Disturbed taste

(dysgeusia) or smell

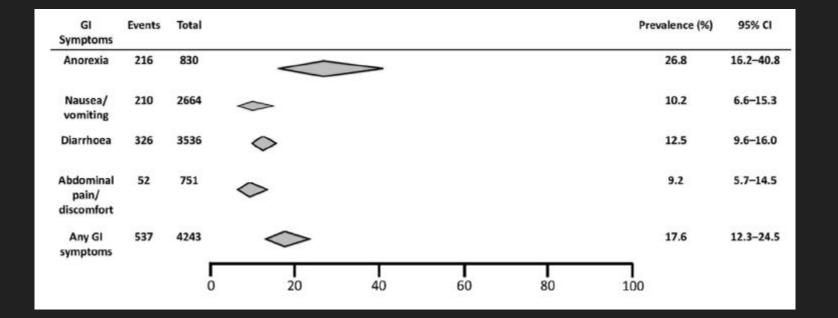
(dysosmia)

June 2020

Congestion

Runny nose

Nausea


Diarrhea

CLINICAL—ALIMENTARY TRACT

Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis

Ka Shing Cheung,^{1,2,*} **Ivan F. N. Hung**,^{1,3,*} Pierre P. Y. Chan,⁴ K. C. Lung,⁵ Eugene Tso,⁶ Raymond Liu,⁴ Y. Y. Ng,⁷ Man Y. Chu,⁸ Tom W. H. Chung,⁹ Anthony Raymond Tam,¹ Cyril C. Y. Yip,⁹ Kit-Hang Leung,⁹ Agnes Yim-Fong Fung,³ Ricky R. Zhang,^{1,3} Yansheng Lin,² Ho Ming Cheng,¹ Anna J. X. Zhang,³ Kelvin K. W. To,^{3,9} Kwok-H. Chan,^{3,9} Kwok-Y. Yuen,³ and Wai K. Leung¹

GI symptoms are more common in severe COVID disease (17%) then in non-severe COVID disease (11%)

48.1% of stool samples were + for viral RNA

- Detected as early as 3 days into illness
- 70% of patients has + stool RNA despite negative respiratory RNA

Journal Pre-proof

Are Gastrointestinal Symptoms Specific for COVID-19 Infection? A Prospective Case-Control Study from the United States

Alan Chen, MD, Amol Agarwal, MD, Nishal Ravindran, MD, Chau To, MD, Talan Zhang, MS, Paul J. Thuluvath, MD., FRCP

Prospective case-control study at a single hospital in Maryland Telephone survey of patients who tested + or - for COVID swab

GI Sxs in COVID-19 Infection: A Telephone Survey

COVID	-	+
Nausea	26%	30%
Anorexia	26%	53%
Diarrhea	30%	50%
Abd pain	19%	26%
Dysgeusia	14%	67%

Anorexia + diarrhea + dysgeusia = 99% specific for COVID-19 infection

NARRATIVE REVIEWS

Fasiha Kanwal, Section Editor

Diarrhea During COVID-19 Infection: Pathogenesis, Epidemiology, Prevention, and Management

Ferdinando D'Amico,*,‡ Daniel C. Baumgart,§,a Silvio Danese,*,|| and Laurent Peyrin-Biroulet‡,a

Evaluated 21 studies looking at 3042 patients

- Diarrhea ranged from 2% to 35%
- Duration to admission was longer if they have GI symptoms
- Average of 3 non-dehydrating BMs/day
- Greater percentage of GI symptoms in severe disease

Gastrointestinal Symptoms and Coronavirus Disease 2019: A Case-Control Study From the United States

Yael R. Nobel, Meaghan Phipps, Jason Zucker, Benjamin Lebwohl, Timothy C. Wang, Magdalena E. Sobieszczyk, and Daniel E. Freedberg

¹Division of Digestive and Liver Diseases, Columbia University Irving Medical Center–New York Presbyterian Hospital, New York, New York; and ²Division of Infectious Diseases, Columbia University Irving Medical Center–New York Presbyterian Hospital, New York, New York

Retrospective case-control study of 278 COVID-19 positive and 238 COVID-19 negative patient

GI symptoms at the time of testing, more like to test positive for COVID-19 No GI symptoms, patients are equally likely to test positive or negative

GI symptoms were associated with a 70% relative increased risk of testing positive

AGA Institute Rapid Review of the GI and Liver Manifestations of COVID-19, Meta-Analysis of International Data, and Recommendations for the Consultative Management of Patients with COVID-19

Authors: Shahnaz Sultan*1, Osama Altayar*2, Shazia M. Siddique³, Perica Davitkov⁴, Joseph D. Feuerstein⁵, Joseph K. Lim⁶, Yngve Falck-Ytter⁴, Hashem B. El-Serag³ on behalf of the AGA

Meta-analysis of 47 studies including 10,890 patients throughout the world

Most studies were based on hospitalized patients

	China	Outside China
Diarrhea	5.8%	18.3%
N/V	5.2%	14.9%
Abdominal pain	2.7%	5.3%

Diarrhea is the only presenting symptom in <10% of patients 2-10 BMs per day
Usually self-resolves, lasts 4 days

A(dys)geusia vs a(dys)nosmia

Ageusia - Loss of taste

Anosmia - Loss of smell

COVID-19 and anosmia: A review based on up-to-date knowledge

Xiangming Meng^{a,*}, Yanzhong Deng^b, Zhiyong Dai^a, Zhisheng Meng^c

Many coronaviruses cause anosmia

Up to 50% of patients can develop olfactory dysfunction

Anosmia begins 4-5 days after sx onset - 98% improvement by day 28

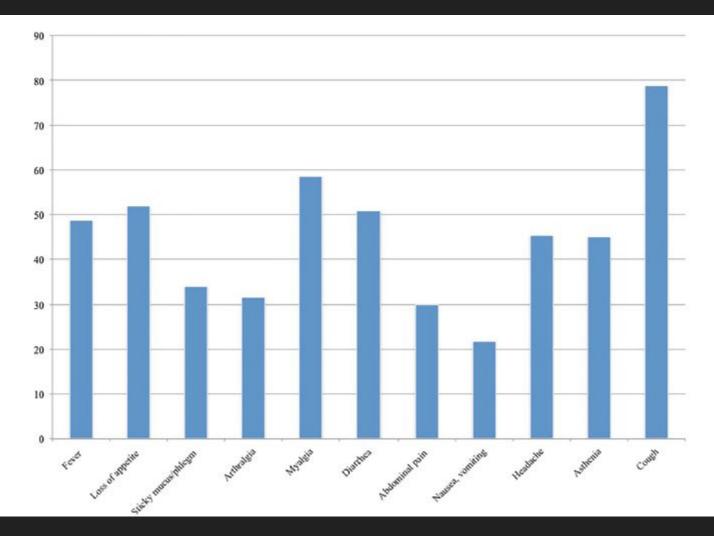
Higher incidence in European and American countries, rare in China

Can be the only presenting sx

Virally-induced olfactory nerve damage vs local inflammation of nasal cavity

a Department of Otolaryngology, Wuxi Huishan District People's Hospital, 2 Zhanqian North Road, Luoshe Town, Huishan District, Wuxi 214187, PR China

b Department of Anesthesiology, Wuxi Huishan District People's Hospital, 2 Zhanqian North Road, Luoshe Town, Huishan District, Wuxi 214187, PR China


^c Faculty of Information Engineering and Automation, Kunming University of Science and Technology, No.727 South Jingming Road, Chenggong District, Kunming 650500, PR China

Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study

Jerome R. Lechien^{1,2,3,4} · Carlos M. Chiesa-Estomba^{1,5} · Daniele R. De Siati^{1,6} · Mihaela Horoi⁴ · Serge D. Le Bon⁴ · Alexandra Rodriguez⁴ · Didier Dequanter⁴ · Serge Blecic⁷ · Fahd El Afia^{1,3} · Lea Distinguin^{1,3} · Younes Chekkoury-Idrissi^{1,3} · Stéphane Hans³ · Irene Lopez Delgado^{1,8} · Christian Calvo-Henriquez^{1,9} · Philippe Lavigne^{1,10} · Chiara Falanga^{1,11} · Maria Rosaria Barillari^{1,11} · Giovanni Cammaroto^{1,12} · Mohamad Khalife¹³ · Pierre Leich¹⁴ · Christel Souchay¹⁴ · Camelia Rossi¹⁵ · Fabrice Journe² · Julien Hsieh^{1,16} · Myriam Edjlali^{17,18} · Robert Carlier¹⁸ · Laurence Ris¹⁹ · Andrea Lovato²⁰ · Cosimo De Filippis²⁰ · Frederique Coppee²¹ · Nicolas Fakhry^{1,22} · Tareck Ayad^{1,10} · Sven Saussez^{1,2,4,13}

417 cases of mild to mod COVID-19 + infections from 12 European hospitals

- 85.6% of patients had either anosmia or hyponosmia
- Occurred before other symptoms in 12% of cases
- Most recovered by day 8
- 79% of patients w/o rhinorrhea had anosmia or hyposmia

85.6% of patients had either anosmia or hyponosmia

Occurred before other symptoms in 12% of cases

Most recovered by day 8

79% of patients w/o rhinorrhea had anosmia or hyposmia

Taste Changes (Dysgeusia) in COVID-19: A Systematic Review and Meta-analysis

Muhammad Aziz, Abhilash Perisetti, Wade M. Lee-Smith, Mahesh Gajendran, Pardeep Bansal, and Hemant Goyal

¹Department of Internal Medicine, University of Toledo, Toledo, OH; ²Department of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR; ³University of Toledo Libraries, Toledo, OH; ⁴Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX; ⁵Division of Gastroenterology, Moses Taylor Hospital and Reginal Hospital of Scranton, Scranton, PA; and ⁶The Wright Center for Graduate Medical Education, Scranton, PA

5 articles totalling 817 patients

49.8% of patients had dysguesia/aguesia

CORONAVIRUS

Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia

David H. Brann^{1*}, Tatsuya Tsukahara^{1*}, Caleb Weinreb^{1*}, Marcela Lipovsek², Koen Van den Berge^{3,4}, Boying Gong⁵, Rebecca Chance⁶, Iain C. Macaulay⁷, Hsin-Jung Chou⁶, Russell B. Fletcher^{6†}, Diya Das^{6,8‡}, Kelly Street^{9,10}, Hector Roux de Bezieux^{5,11}, Yoon Gi Choi¹², Davide Risso¹³, Sandrine Dudoit^{3,5}, Elizabeth Purdom³, Jonathan Mill¹⁴, Ralph Abi Hachem¹⁵, Hiroaki Matsunami¹⁶, Darren W. Logan¹⁷, Bradley J. Goldstein¹⁵, Matthew S. Grubb², John Ngai^{6,12,18§}, Sandeep Robert Datta¹

Damage to non-neuronal supporting cells may lead to disruption of signalling to the brain or olfactory sensory neuron death Vascular damage may lead to hypoperfusion and inflammation leading to olfactory bulb dysfunction

Pancreatic Injury Patterns in Patients With Coronavirus Disease 19 Pneumonia

Fan Wang, 1,2,* Haizhou Wang, 1,2,* Junli Fan, 3,* Yongxi Zhang, 4,* Hongling Wang, 1,2 and Qiu Zhao 1,2

¹Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; ²Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China; ³Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; and ⁴Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China

Evaluated 52 patients who were + for COVID-19
Injury was defined as an elevated amylase or lipase level
17% suffered from pancreatic injury
The patients with pancreatic injury had more severe illness

Journal Pre-proof

Emerging phenotype of SARS-CoV2 associated pancreatitis.

Peter Szatmary, Ankur Arora, Michael Godwin Thomas Raraty, Declan Francis Joseph Dunne, Ryan David Baron, Christopher Michael Halloran

5 young, overweight, COVID + men with CT-proven pancreatitis Mild pancreatic and duodenal inflammation Profound SIR Surprising low amylase levels

Nasal epithelium

Respiratory Epithelium

- Humidify air
- Continuous with epithelium of respiratory tract
- Contain high levels of ACE2 and TMPRSS2

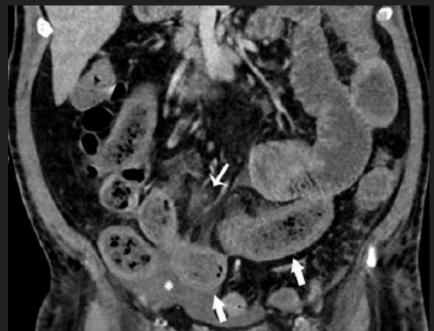
Olfactory Epithelium

- Odor detection
- No ACE2 in sensory neurons (SN), but in cells that support SN, reserved stem cells

Imaging

Radiology

Article type: Original Research


Abdominal Imaging Findings in COVID-19: Preliminary Observations

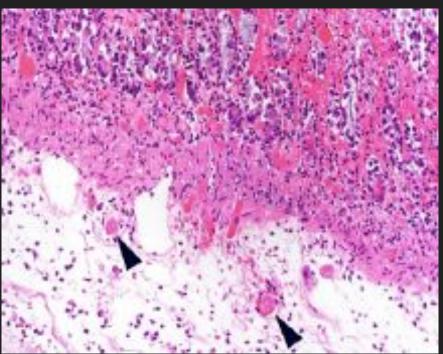
Evaluated CT scan, x-ray, US and MRI studies on 134 in-pts with COVID-19

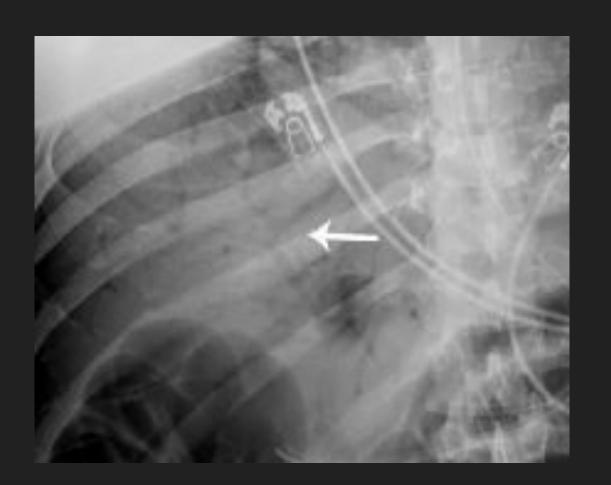
Bowel findings in 31% included:

- Bowel wall thickening (29%)
- Pneumatosis or portal venous gas (20%)
- Perforation

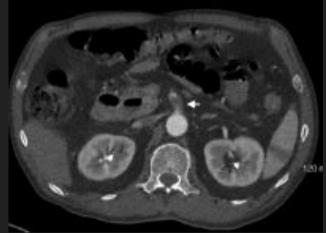
Pts with pneumatosis and portal venous gas @ ex-lap - necrotic bowel in half of patients.

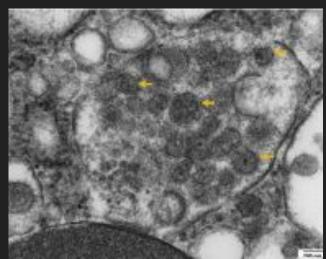





Necrotic bowel had a yellow appearance vs a purple dusky appearance

Pathology revealed ischemia with multifocal necrosis and occasional fibrin thrombi in submucosal arterioles

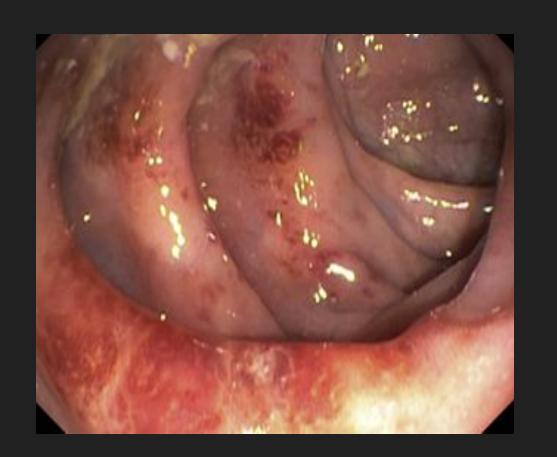


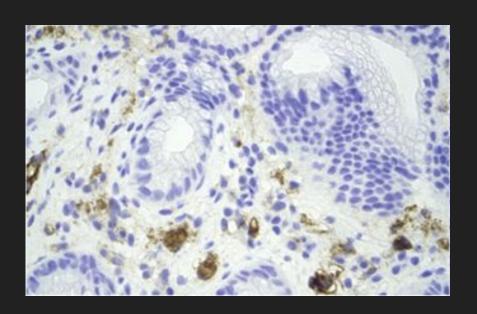


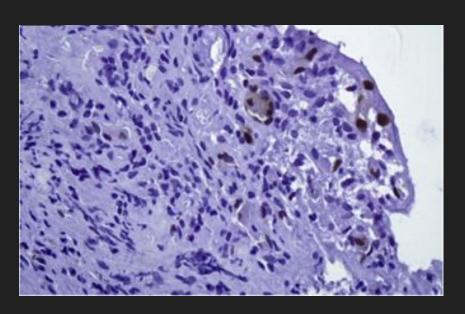
A 69 y/o man with COVID presenting with abdominal pain and constipation

Imaging revealed a thrombus in the proximal segment of the SMA

Electron microscopy revealed viral particles clustered within cisternal spaces in enterocytes



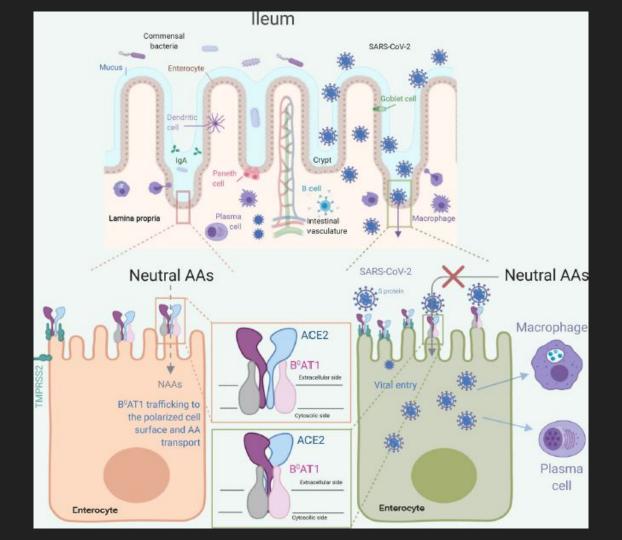



Mitchell, J. Clinical Gastro Hep July 2020

Endoscopic Findings in Patients Infected With 2019 Novel Coronavirus in Lombardy, Italy

Sara Massironi,* Chiara Viganò,* Lorenzo Dioscoridi,* Elisabetta Filippi, §,¶¶ Michela Pagliarulo, Guido Manfredi, Clara Benedetta Conti, Clementina Signorelli,* Alessandro Ettore Redaelli, Guilia Bonato, Elena Iiritano, Roberto Frego, Nicola Zucchini, Marco Ungari, Marianna Pedaci, Francesca Bono, Santillo Di Bella, Elisabetta Buscarini, Massimiliano Mutignani, Roberto Penagini, Marco Emilio Dinelli, and Pietro Invernizzi*

GI Transmission


How Does COVID-19 Enter the GI?

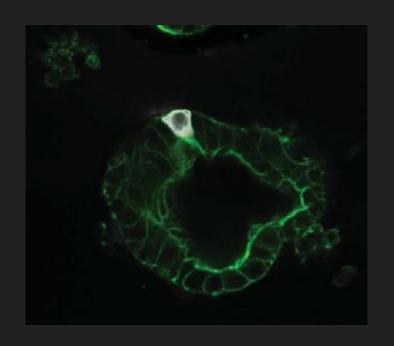
In 2003, ACE2 was identified as the receptor for SARS-CoV

Newer reports show SARS-CoV-2 engages ACE2 as entry receptor and employs serine protease TMPRSS2 for cell entry

In humans, ACE2 is expressed in airway, kidney cells, small intestine (mostly ileum, jejunum) and to a lesser extent, the colon

- Ileal ACE2+TMPRSS2+ cells are absorptive enterocytes
- Highest expression of ACE2 in the body is in the brush border of enterocytes

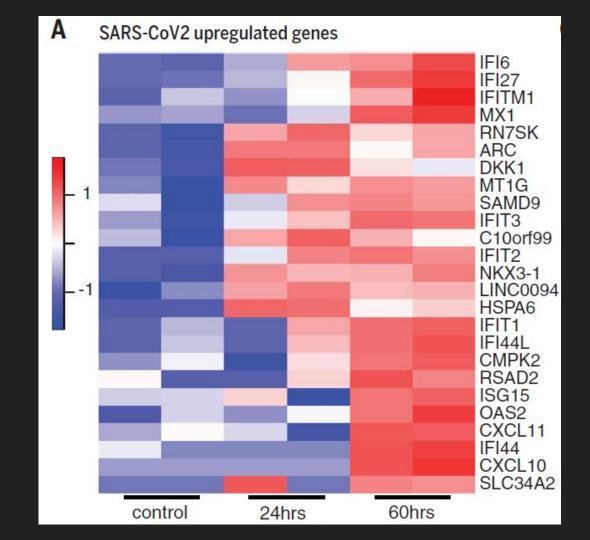
RESEARCH ARTICLE


CORONAVIRUS

SARS-CoV-2 productively infects human gut enterocytes

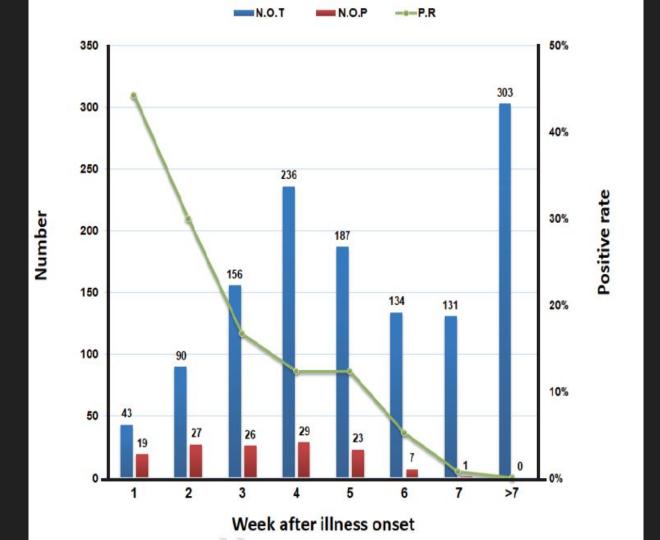
```
Mart M. Lamers<sup>1</sup>*, Joep Beumer<sup>2</sup>*, Jelte van der Vaart<sup>2</sup>*, Kèvin Knoops<sup>3</sup>, Jens Puschhof<sup>2</sup>, Tim I. Breugem<sup>1</sup>, Raimond B. G. Ravelli<sup>3</sup>, J. Paul van Schayck<sup>3</sup>, Anna Z. Mykytyn<sup>1</sup>, Hans Q. Duimel<sup>3</sup>, Elly van Donselaar<sup>3</sup>, Samra Riesebosch<sup>1</sup>, Helma J. H. Kuijpers<sup>3</sup>, Debby Schipper<sup>1</sup>, Willine J. van de Wetering<sup>3</sup>, Miranda de Graaf<sup>1</sup>, Marion Koopmans<sup>1</sup>, Edwin Cuppen<sup>4,5</sup>, Peter J. Peters<sup>3</sup>, Bart L. Haagmans<sup>1</sup>†, Hans Clevers<sup>2</sup>†‡
```

In-vitro study using organoids derived from adult stem cells infected with SARS-CoV-2


SARS-CoV-2 infected-enterocytes

24 hours 60 hours

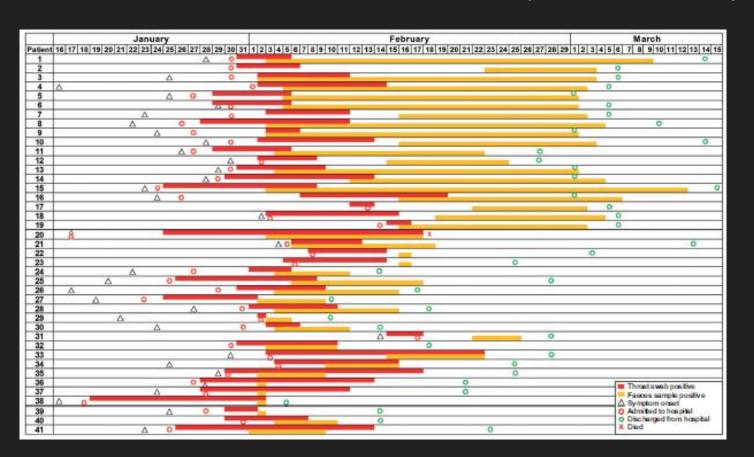
- Gene expression changes induced by CoV-1 and CoV-2
- Infection elicited a broad signature of cytokineand interferonstimulated genes
- Upregulation also is seen in other GI viral infections


Journal Pre-proof

The Time Sequences of Oral and Fecal Viral Shedding of Coronavirus Disease 2019 (COVID-19) Patients

Fang Zhao, Yang Yang, Zhaoqin Wang, Liang Li, Lei Liu, Yingxia Liu

Retrospective review evaluating 401 patients with COVID-19 in fecal and respiratory swabs for more than 7 weeks

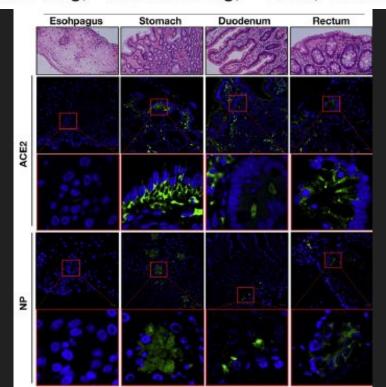

The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients

```
Yifei Chen MD<sup>1</sup> | Liangjun Chen MD<sup>2</sup> | Qiaoling Deng MD<sup>2</sup> | Guqin Zhang MD<sup>1</sup> | Kaisong Wu MD<sup>1</sup> | Lan Ni MD<sup>1</sup> | Yibin Yang MD<sup>1</sup> | Bing Liu MD<sup>1</sup> | Wei Wang MD<sup>1</sup> | Chaojie Wei MD<sup>1</sup> | Jiong Yang MD<sup>1</sup> | Guangming Ye MD<sup>2</sup> | Zhenshun Cheng MD<sup>1</sup>
```

Retrospective review of 42 COVID-positive patients

- 20% GI symptoms
- 66% + stool RNA
- 65% remained + in stool after pharyngeal swab neg
- Pharyngeal swab + 6.5 days after SO and + 11 days in feces after SO

Lancet. Brief Correspondence (March 2020)



BRIEF COMMUNICATIONS

Evidence for Gastrointestinal Infection of SARS-CoV-2

Fei Xiao, 1,2,3,* Meiwen Tang,4,* Xiaobin Zheng,5,* Ye Liu,6 Xiaofeng Li,7 and Hong Shan2,3,8

Infectious SARS-CoV-2 in Feces of Patient with Severe COVID-19

Fei Xiao, Jing Sun, Yonghao Xu, Fang Li, Xiaofang Huang, Heying Li, Jingxian Zhao, Jicheng Huang, Jincun Zhao

Author affiliations: Sun Yat-sen University, Zhuhai, China (F. Xiao); Guangzhou Medical University, Guangzhou, China (J. Sun, Y. Xu, F. Li, X. Huang, Jingxian Zhao, Jincun Zhao); Chinese Academy of Sciences, Guangzhou (H. Li); Guangzhou Customs District Technology Center, Guangzhou (J. Huang)

Emerging Infectious Disease - August

- Collected fecal samples from COVID + patients
- Found viral particles in stool up to 28 days after symptom onset
- Isolated the virus and infected fresh Vero E6 cells
- Transmission is possible through aerosolized feces

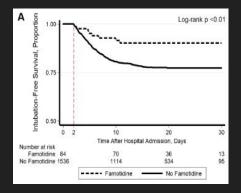
ORIGINAL ARTICLE

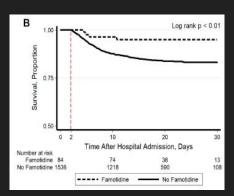
Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus

Ignatius T.S. Yu, M.B., B.S., M.P.H., Yuguo Li, Ph.D., Tze Wai Wong, M.B., B.S., Wilson Tam, M.Phil., Andy T. Chan, Ph.D., Joseph H.W. Lee, Ph.D., Dennis Y.C. Leung, Ph.D., and Tommy Ho, B.Sc.

Amoy Gardens, Hong Kong

- Design of bathroom floor drains lacked a replenishment system to keep water traps filled, leading virus laden aerosols to seep into bathrooms

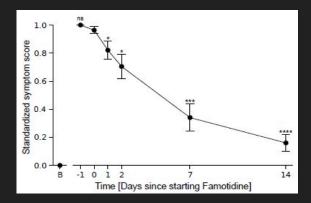

H₂ Receptor Antagonists

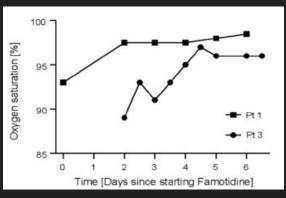

Famotidine Use Is Associated With Improved Clinical Outcomes in Hospitalized COVID-19 Patients: A Propensity Score Matched Retrospective Cohort Study

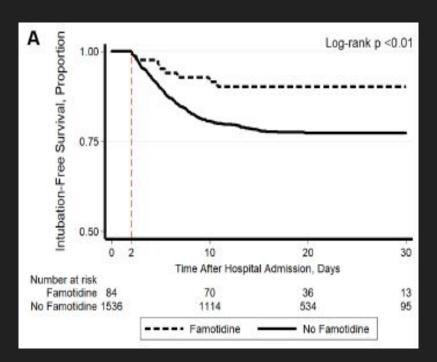
Daniel E. Freedberg, ¹ Joseph Conigliaro, ^{2,3} Timothy C. Wang, ¹ Kevin J. Tracey, MD, ⁴ Michael V. Callahan, ^{5,6} and Julian A. Abrams, ¹ on behalf of the Famotidine Research Group

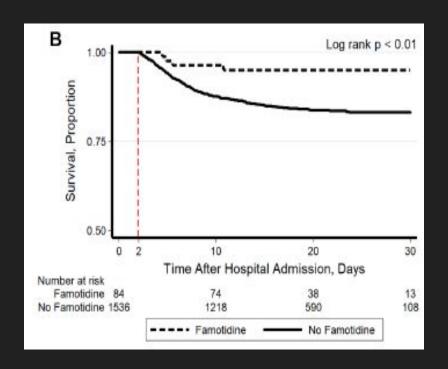
Intro: computer models, famotidine may inhibit a protease which is needed for viral replication Study: 1620 patients with COVID-19

- 84 took famotidine (20-40 mgs) within 24 hours of admission
- Primary outcome was death or intubation 2-30 days




Famotidine use and quantitative symptom tracking for COVID-19 in non-hospitalised patients: a case series


Tobias Janowitz , ^{1,2} Eva Gablenz, ^{1,3} David Pattinson, ⁴ Timothy C Wang, ⁵ Joseph Conigliaro, ^{6,7} Kevin Tracey, ⁷ David Tuveson ⁰


10 patients

- NYS, NJ, Sweden
- High dose famotidine (80 mg TID)
- Most symptoms improved within 24 to 48 hours

Hazard Ratio of 0.43 Intubation or death

Impact of Famotidine Use on Clinical Outcomes of Hospitalized COVID-19 Patients

Retrospective study of 878 patients, 83 (9.5%) of whom received famotidine

- Similar demographics, except famotidine pts younger by 5 years
- Only 30% were taking famotidine prior to hospitalization
- Mostly administered orally, 20mg daily
- Primary outcome: In-hospital death and intubation

Impact of Famotidine Use on Clinical Outcomes of Hospitalized COVID-19 Patients

	In Hospital Death	In Hospital Intubation	Death/intubation
Famotidine	14.5%	21.7%	7.2%
Non-famotidine	26%	32%	13.8%

Significant reduction in risk of in-hospital mortality OR 0.366

Impact of Famotidine Use on Clinical Outcomes of Hospitalized COVID-19 Patients

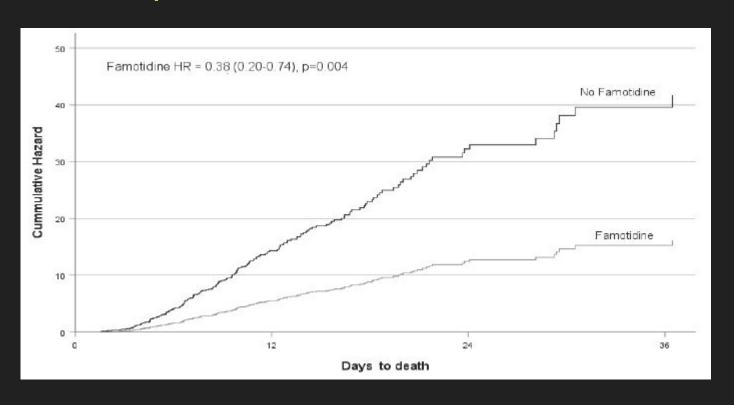


Table 3. Laboratory Findings: All Patients and In Subpopulations with and Without Famotidine

Laboratory Values, median (IQR)					
, ,	Reference Range	All Patients (n=772)	No Famotidine (n=689)	Famotidine (n=83)	p value ^a
Hematologic					
WBC, x 109/L ^b	3.5 - 9.5	11.30(7.60-17.20)	11.30(7.60-17.40)	10.80(6.80-16.00)	0.424
Lymphocytes, x 109/L ^c	1.50 - 4.50	0.60(0.40-0.94)	0.60(0.40-0.93)	0.66(0.37-1.09)	0.666
NLR, x 109/L ^b	0.78 - 3.53	9.30(5.07-16.96)	9.43(5.05-17.25)	8.11(5.48-14.86)	0.403
Monocytes, x 109/L ^c	0.2 - 1.50	0.28(0.17-0.46)	0.29(0.18-0.46)	0.27(0.15-0.43)	0.401
Platelets, x 109/L ^c	150 - 400	164.00(119.00-212.00)	167.00(119.00-212.00)	148.00(107.00-201.00)	0.093
Eosinophils, x 109/Lb	0 - 0.7	0.07(0.01-0.19)	0.08(0.01-0.19)	0.07(0.01-0.20)	0.273
Biochemical					
AST, U/L ^b	10 - 40	55.00(36.00-8100)	56.00(36.00-81.00)	48.00(35.00-77.00)	0.203
ALT, U/L ^b	10 - 40	38.00(21.00-71.00)	39.00(21.00-71.00)	36.00(22.00-71.00)	0.732
BUN, mg/dL ^c	20-Aug	15.00(11.00-26.00)	15.00(11.00-27.00)	14.00(11.00-19.00)	0.073
Albumin, g/dL ^c	3.5 - 5.5	2.80(2.30-3.20)	2.80(2.30-3.20)	3.00(2.50-3.40)	0.028
Infection related indices					1
hsCRP, mg/L ^b	0.0 - 3.0	12.31(6.48-20.74)	12.83(6.77-21.22)	9.41(4.82-14.08)	0.002
ESR, mm/h ^b	0 -15	65.00(41.00-88.00)	67.00(41.50-88.00)	57.50(35.00-84.00)	0.19
Serum ferritin, ng/mLb	11 - 336	940.00(426.00-1,929.00)	964.00(452.00-1,947.00)	797.50(343.00-1,345.50)	0.076
Procalcitonin, ng/mlb	0.10 - 0.49		0.30(0.13-1.06)	0.16(0.08-0.45)	0.004
Appreviations: wBC, who neutrophil-to-lymphocyte aminotransferase; ALT, all blood urea nitrogen; hsCR	e ratio; AST, a nlanine aminot	aspartate bransferase; BUN, b M	Mann-wnitney U test. Maximum value used. Minimum value used.		

protein; ESR, erythrocyte sedimentation rate

COVID-19: Famotidine, Histamine, Mast Cells and Mechanisms

Mechanism for famotidine is on-target histamine receptor H₂ activity

Clinical COVID-19 involves dysfunctional mast cell activation

Famotidine does NOT bind papain-like protease or 3 chymotrypsin-like protease

In Vero E6 cells, famotidine showed no antiviral activity (while remdesivir and HCQ did)

Famotidine binds with much more affinity to H₂ receptor than cimetidine

Mast cell deregulation releasing histamine, bradykinin, etc, impacting cellular and basement membrane function and tight junction integrity causing edema

Inference: COVID-19 is at least partially mediated by pathologic histamine release

Famotidine binds with much more affinity to H₂ receptor than cimetidine

PPI and COVID

PPIs are associated with 1 risk of enteric infections and SIBO

Online phone survey described as "national health survey"

6.4% + COVID rate

If taking PPI, OR 2.15 for daily use and 3.67 for BID use

No increase in risk with H₂ blocker

Erica J. Brenner, ^{1,*} **Ryan C. Ungaro**, ^{2,*} Richard B. Gearry, ³ Gilaad G. Kaplan, ⁴ Michele Kissous-Hunt, ⁵ James D. Lewis, ⁶ Siew C. Ng, ⁷ Jean-Francois Rahier, ⁸ Walter Reinisch, ⁹ Frank M. Ruemmele, ¹⁰ Flavio Steinwurz, ¹¹ Fox E. Underwood, ⁴ Xian Zhang, ¹² Jean-Frederic Colombel, ² and Michael D. Kappelman ¹

IBD registry looking at the impact of COVID-19 on 525 patients with IBD

- 31% required hospitalizations
- 7% met the primary outcome (ICU/ventilator/death)
- 3% fatality rate
- Risk factors included increased age, 2 or more comorbidities, corticosteroids and 5-ASA
- Anti-TNFs were NOT associated with severe COVID infections

CLINICAL PRACTICE UPDATES

AGA Clinical Practice Update on Management of Inflammatory Bowel Disease During the COVID-19 Pandemic: Expert Commentary

David T. Rubin, 1 Joseph D. Feuerstein, 2 Andrew Y. Wang, 3 and Russell D. Cohen 1

Patients with IBD are not at increased risk

Patients who DO NOT have the infection should continue their medications

If the patient has a known infection w/o symptoms, hold thiopurines, methotrexate
and tofacitinib and delay biologics by 2 weeks

If symptomatic, hold medications until symptoms resolution or negative testing

Conclusions

With any GI symptoms, you must always think of COVID-19

Consider imaging when patients present with abdominal discomfort or unexplained sepsis

Very likely that fecal shedding can be infectious

Famotidine appears to be an effective treatment and prospective trials are on the way

Consider changing PPIs to H₂ blockers in your outpatients

YOU HAVE 48 HOURS TO REGISTER AND COMPLETE EVALUATION FORM FOR THIS ACTIVITY

PASSCODE for this RSS Activity Event is:

ACCREDITATION STATEMENT

In support of improving patient care, Albert Einstein Collage or field live-New effire Medical Center is jointly accredited by the Accreditation Council for Continuing Medical Education (ACEME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team.

CREDIT DESIGNATION

Physians: Albert Einstein College of Medicine-Montefiore Medical Center designates this live activity for a maximum of 1.0 AMA PRA Category 1 CreditoTM. Physicians should claim only credit commensurate with the extent of their participation in the activity.

This activity was planned by and for the healthcare team, and learners will receive 1 credits Interprofessional Continuing Education (IPCE) credit for learning and change.